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In quantum optics noise plays an important role, since many of the nonlinear 
optical systems are quite sensitive to the subtle influences of weak random per- 
turbations, being either classical of quantum mechanical in nature. We discuss 
the origin of quantum noise emerging from the reversible or the irreversible part 
of the dynamics and compare it with the properties of purely classical 
fluctuations. These general features are illustrated by a number of physical 
examples, such as the laser with loss or gain noise, nonlinear optical devices, 
and the phenomenon of quantum jumps. These processes have been chosen 
mainly to illustrate the different aspects of noise, but also because, to a large 
extent, they can be described in analytical terms. 
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1. I N T R O D U C T I O N  

In descr ip t ions  of classical macroscop ic  systems, the physical  p roper t ies  can 
essential ly be charac te r ized  by  de terminis t ic  dyna mic  equat ions ,  and  fluc- 
tua t ions  or  noise p lay  only a minor  role. Thus,  only  when one looks  very 
closely are the inevi table  and minute  i r regular i t ies  observed.  In the field of 
q u a n t u m  optics,  this seems to be somewha t  different, since from the ear ly 
days  of  laser  physics,  the ques t ion  of noise has p layed  an essential  role. 
Due  to the e n o r m o u s  precis ion tha t  can be achieved in opt ica l  exper iments ,  
the effects of r andomness  are  often r e m a r k a b l e  and  can se ldom be neglected. 
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In the case of the laser, it is of fundamental interest to determine the 
mechanisms that limit the possible reduction of the linewidth, and thereby 
determine the limits of accuracy of an optical experiment. 

There exists a number of nonlinear optical devices which exhibit 
instabilities and bifurcations similar to phase transitions in equilibrium 
thermodynamics/~'2) In such cases noise is important, since close to a 
transition point, where two states compete for and finally exchange the 
stability, the restoring forces become weak and can no longer supress the 
effects of fluctuations. This is a general feature not only in quantum optics, 
but in many other areas, such as chemical reaction dynamics and 
hydrodynamics. In the neighborhood of an instability, fluctuations tend to 
grow to macroscopic order, where they may even dominate the dynamic 
behavior. In those cases, it is most obvious that a statistical description 
must be applied and noise taken into account explicitly. 

Fluctuations can arise from various sources. For example: in ther- 
modynamic equilibrium systems, thermal fluctuations, which are propor- 
tional to the temperature and scale inversely proportional to the system 
volume, can also play a role in quantum optics. To be effective, however, 
the photon energies must be roughly of the same order as the thermal 
energy kT. This is the case, for instance, for microwave transitions in 
Rydberg atoms even at very low temperatures. A large variety of random 
influences can be tracked back to more or less technical reasons, such as 
the mechanical stability and the vibrations of optical resonators, fluc- 
tuations in the plasma of a laser discharge, hydrodynamic fluctuations in a 
dye-jet, or the intensity fluctuations of the driving laser field itself. All these 
random perturbations are classical in nature and lead to a semiclassical 
description. While most of the previously mentioned noise sources might be 
eliminated at least in principle, the quantum nature of the underlying 
microscopic processes introduces noise that is inevitable and inherent to all 
quantum mechanical problems. While most macroscopic systems seldom 
are sensitive enough to feel such subtle perturbations, in quantum optics 
one finds an increasing number of examples where quantum noise plays the 
essential role. 

Quantum fluctuations can appear in various forms, depending on 
whether they are generated by the reversible or the irreversible part of the 
dynamics. Interacting with a reservoir, a quantum system can either be 
subject to dissipation, when the reservoir is kept in thermal equilibrium, or 
it may be driven far from equilibrium, when the reservoir, loosely speaking, 
is prepared at negative temperatures, representing a pumping process. In 
both cases, the reservoir coupling introduces noise into the system, which is 
qualitatively identical with the effects of classical fluctuations, and which 
even persists for vanishing temperatures in the second case. Also, the rever- 
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sible Hamiltonian dynamics themselves can introduce noise, in general 
through nonlinear interactions. But this sort of randomness has rather 
peculiar properties, which have only little if anything in common with a 
classical stochastic process. On the one hand, this makes these processes 
rather interesting, because we can expect some new and interesting proper- 
ties that are unknown in classical physics. On the other hand, the 
mathematical formulation of these effects can become rather difficult and 
may require the development of new methods. 

Among the basic quantum optical processes, there is a growing num- 
ber of examples that require a statistical description due to the presence of 
either classical or quantum noise: the laser with intrinsic spontaneous 
emission noise; the dye-laser with external pump-field noise; optical 
bistability with a noisy driving field; parametric processes, sub- and second 
harmonic generation exhibiting quantum noise; resonance fluorescence as a 
source of light with typical nonclassical properties; and quantum jumps in 
three-level atoms are triggered purely by quantum noise, but still are visible 
to the naked eye. 

The paper is organized as follows: In the next section we briefly sum- 
marize the relevant physical quantities or observables that are useful for 
characterizing the statistical behavior of optical systems. Section 3 reviews 
the different mathematical approaches that are available to actually 
calculate the properties mentioned above for a given quantum optical 
problem. Thereby we will illustrate the different properties of quantum 
fluctuations. The last section summarizes a number of specific examples 
and their solutions, chosen to illustrate the different aspects of classical or 
quantum, additive or multiplicative noise in optical systems. 

2. P H Y S I C A L  O B S E R V A B L E S  

Generally speaking, quantum optics is the science of the interaction of 
light and matter. In a more limited sense, this term is restricted to the 
interaction of matter with the quantized electromagnetic field only. In both 
cases, namely in the semiclassical and the quantum formulations, physical 
observables are described by ensemble averages that are taken over the 
externally imposed classical or the intrinsic quantum fluctuations. In this 
sense, the ensemble averages that appear in the following either represent 
an integral over a positive classical probability density or the trace 
involving the density operator in the quantum case. The averages can even 
stand for both, when classical as well as quantum noise are present 
simultaneously. 

Experimentally, we either measure the properties of the field, such as 
amplitudes, intensities, and their correlations, or we observe directly the 
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atomic properties, such as the population distribution over the energy 
levels. The field E(x, t) in many examples can be expanded in a sum over 
the eigenmodes of a fictitious cavity: 

( 2 x h ~ 1 7 6  1/2 (0 t , ,  ,,io~k, a_ eejbkje-i~'~') E(x, t)= X \-7U } '~ " 
k,j 

(2.1) 

where ekj is the polarization vector and co k is the frequency of the mode 
with wave vector k, V is the quantization volume and c the speed of light. 
For many phenomena of interest, we have to consider only a small number 
of modes that interact dynamically. In quantized form, E(x, t) becomes an 
operator-valued field, while the amplitudes b2j and bkj turn into the 
corresponding boson operators. 

A hetero- or homodyne experiment allows one to measure the field 
amplitude directly, by beating it with a reference field, the local oscillator, 
on the cathode of a photon multiplier. Thereby it is possible to obtain 
phase-sensitive information about the field. As a function of the relative 
phase we may observe 

1 
Re(E) =~  (b*(t) + b(t) ), Im(E) = 1 (b*(t) - b(t) ) (2.2) 

or any linear combination. The angle brackets denote the classical or 
quantum average. The intensity of the field is given by 

I(t) = ( bt(t) b(t) ) (2.3) 

These averages evolve in time and represent the transient behavior of a 
system that generally relaxes, from an initially prepared arbitrary state, 
toward its stationary state. This state may be time independent or may 
oscillate periodically in time, when an external field breaks the time- 
reversal symmetry. A quantitative measure for the randomness of these 
fields is provided by the appropriate variances. For example, the random 
excursions of the field amplitude are characterized by 

1 
(A Re(E) z) =~  [ ( (be+b)2)  - ( b * + b )  2] 

(2.4) 
1 

(A Im(E) 2) = --~ [ ( ( b t - b )  2 ) -  ( b * - b )  2] 

and the intensity fluctuations are measured in terms of 

( A I  2) = (btb~bb ) -  (btb ) 2 (2.5) 
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For a classical stochastic process, the sequence of b* and b is irrelevant 
in Eq. (2.5), but in the corresponding quantum case normal ordering of the 
boson operators becomes essential, in order to be sensitive to the two 
photon properties only. 

A stationary ensemble is independent of the arbitrariness of the initial 
preparation, and therefore single time averages must be contant and in 
general are identical with the asymptotic values of the transient moments 
above. The intrinsic dynamical properties of the stochastic process are 
characterized by stationary correlation functions. The phase-sensitive 
amplitude correlation function, for example, contains information about 
the spectral properties of the field and its linewidth: 

6 1 ( 0  = (b*(t)  b(t = 0)> (2.6) 

while the two-photon correlation function describes temporal excursions of 
the field intensity or photon number correlations: 

G2(0 = (b*(t = 0) b*(0 b(0 b(t = 0)> (2.7) 

Intuitively speaking, G2 is proportional to the joint probability of 
observing a first photon at t = 0 and a second one a time t later. It is not an 
exclusive probability, in the sense that the second photon is precisely the 
next one emitted, since there can actually be an arbitrary number of 
photons in between. 

A statistical quantity that provides an exclusive measure can be found 
in the photon counting distribution. That is, the probability that in a given 
time interval T a photon detector with quantum efficiency r/ will detect n 
and only n events ~ is given by 

W(n,T)=trp ~" -~. q b*bdt exp -r /  b*bdt (2.8) 

where T is an approriate ordering operator and p the density operator of 
the stationary state. The average recorded photon number is given by 

( n ) =  ~ nW(n, T) (2.9) 
n = 0  

while the photon number fluctuations may be characterized by Mandel's Q 
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parameter, (5'6) which measures the deviation of the actula variance from 
that of the corresponding Poissonian distribution: 

Zff=0 (n - ( n )  ) 2 W(n, T) 
Q = 1 (2.10) 

(n) 

Q = 0  indicates that the variance of a given process is numerically 
indentical to that of a Poisson process, without necessarily being one. 
Q > 0 indicates super-Poissonian statistics and Q < 0 sub-Poissonian. 

The definition of W(n, T) above is explicitly given in quantum 
mechanical notation. There does exist, however, a classical counterpart, 
which we obtain by replacing the operators by classical mode amplitues 
and the average by an integral over the stationary probability density. It is 
not a contradiction in itself to talk about a "classical photon distribution," 
since by the term photons we merely mean the discrete events recorded by 
a photon multiplier and not the quantized states of the field. In this sense, 
the term classical means that we neglect the quantum fluctuations of the 
field, but nevertheless, the counting events are taken to be discrete. 

Starting from the counting probability W(n, T), one can derive further 
probability measures that are quite useful for the comparison of theoretical 
and experimental results, such as: 

1. The probability of observing no photons over a time interval 
0 < t < T after an observation of a photon at t = 0 is 

dW(n = O, T) 
PI(T)  d T -  dT  (2.11) 

dT 

2. The probability of observing a dark period of precisely the length 
T, sandwiched between two photon events at t = 0 and t = T, is 

1 d2W(n=O, T) 
P2(T) d T =  - P~(T-----) dT  2 dT  (2.12) 

From the definition and the intuitive understanding of the counting 
probability W(n, T), it is quite obvious that P1 and P2 represent positive 
probability densities with the appropriate physical meaning. 

3. C L A S S I C A L  A N D  Q U A N T U M  F L U C T U A T I O N S  

In this section we will briefly discuss the similarities and the differences 
in the physical properties of fluctuations that are either of classical or of 
quantum mechanical origin. We also discuss the different mathematical 
methods that are available for describing those dynamic processes in detail. 
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3.1. Semiclassical models 

An amazingly large number of problems in quantum optics do not 
require the quantization of the electromagnetic field, but can be described 
by semiclassical theory with satisfactory accuracy. Most external sources of 
randomness and all the technical fluctuations in the mechanical setup of an 
experiment fall into this category. Fluctuations can also arise in the 
dynamic equations of the atoms, which then are transfered to the field, in a 
way that the field can experience the effects of quantum noise without 
being quantized itself. Semiclassical models are typically derived in the 
following way. 

The dynamics of matter is described by a master equation for the 
atoms under the influence of a classical field E(x, t): 

~ - -  h [H, P A ] + \  dt /irr 

where the Hamiltonian depends on the field amplitude E(x, t) and PA is the 
statistical operator for the atoms. The electromagnetic field satisfies 
Maxwell's equations, with the average atomic polarization as the driving 
force: 

c?E(x, t) 1 OE(x, t) 4~z 
- - - t  - - = - - t r p A P  (3.2) 

Ox c Ot c 

where P is the operator of the resonant atomic polarization and E(x, t) is 
the slowly varying complex field amplitude. The statistical operator PA is a 
functional of the electromagnetic field PA = pA(E(x, t')) containing E at all 
earlier times t'. In the adiabatic approximation, i.e., when the atomic 
dynamics evolves much faster than the transients of the field itself, the 
retardation in PA may be neglected and the functional on the right-hand 
side of the field equation turns into a simple instantaneous function of E(t) 
directly: 

4~ 
- -  tr PAP = F(E(x, t)) (3.3) 
c 

Under this assumption we obtain a closed and in general nonlinear 
equation for the complex field amplitude alone, which typically is of the 
form 

dE(t)= { F ) 
dt \ - ~  + 1 + 1E(t)l ~ E(t) + ... (3.4) 
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The inclusion of classical noise then will change this equation into a 
Langevin equation with various random force ~j(t). When we expand the 
field about zero we find 

dE(t) 
- [ d - l E ( t ) 1 2 ] E ( t ) +  ... +~ l ( t )+~2( t )E ( t )+  ..- (3.5) 

dt 

where Cj is a sum over the contibutions of all additive random influences, 
such as thermal or spontaneous emission noise. At optical frequencies ther- 
mal noise is negligible and the main source of additive noise comes from 
the vacuum fluctuations. r represents a typical multiplicative source of 
noise, such as the fluctuations in loss or gain. A peculiar source of mul- 
tiplicative fluctuations is the quantum noise that arises in nonlinear 
dynamic systems. If the correlation time of ~j(t) is too short to be of any 
physical relevance or just experimentally inaccessible, we may approximate 
this problem by a stationary, Gaussian Markov process and assume 

( (i(t) (j(t') ) = Q i f o f ( t -  t') (3.6) 

Statistically equivalent to this description is the formalism of the 
Fokker-Planck equation for the probability density P(E, t), that is, the 
probability of observing the field in the interval between E and E+ dE at a 
certain time t: 

OP(E, t) 8 
8t - 8E { ( d - I E I 2 ) E + ' } P ( E ' t )  

8 
BE* { (d - IE[  2) E* + ... } P(E, t) 

8 2 8 2 
+ QI s--f-~-~ P(E, t) + Q2 0--K-~-- ~ IEI2 P(E, t) + ... (3.7) 

Here we have chosen the Stratonovich interpretation of the stochastic 
process. The stationary solution Po(E) of this equation determines the 
long-time behavior, independent of the chosen initial condition, and allows 
one to calculate all relevant stationary moments: 

lim (E"( t ) )  = EnPo(E) dE (3.8) 

and the field variance such as 

2 + ~  ( A E 2 ) = ( E 2 ) - ( E )  = f _ ,  ( E - ( E ) ) 2 P o ( E ) d E > O  (3.9) 

The variances for all classical processes with a positive probability density 
Po(E) are necessarily positive quantities. This may become different when 
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we investigate processes where the quantum noise dominates over the 
classical fluctuations. 

The time-dependent solution of the Fokker Planck equation is found 
systematically in the form of an eigenfunction expansion: 

P(E, t )=  ~ c , P , ( E ) e x p ( - 2 , t )  (3.10) 
n = O  

where Pn and 2, are the eigenfunctions and eigenvalues, respectively, sub- 
ject to appropriate boundary or integrability conditions. In general the 
spectrum may be partially discrete and partially continuous. In such a case 
Eq. (3.10) contains a sum over the discrete and an integral over the con- 
tinuous branch at the spectrum, cn is determined by the initial condition. 
For complex fields E = re e~ it is useful to separate the eigenfunctions into 
modulus and phase, especially when the problem considered is phase 
invariant: 

p , ,m(E)=pm(r  ) eemO, 2=)m (3.11) 

With these definitions, the stationary field correlation function, for 
instance, assumes the following form: 

Gl(t) = f f  rr'{exp[i((~ - ~b')(m - 1)] } Pro(r) P•(r') 

• exp(--2rot) dr dr'd(~ dqb' (3.12) 

which apart from a rapid initial transient is mainly proportional to the 
exponential decay of the slowest "phase-sensitive" eigenvalue: 

Gl(t) ~ exp(-21t)  (3.13) 

while the intensity correlation function G2(t) in the same limit is essentially 
determined by 

G2(t ) ~ exp(-L~ (3.14) 

provided that the lower part of the spectrum is discrete. From the obvious 
fact that the probability P(E, t) is a positive-definite function, one easily 
derives the following general inequalities: 

(i) The inequality 

G2(t) >~0 (3.15) 

tells us that antibunching is impossible in a classical ensemble. 
(ii) The photon counting probability, 

l f o ~  W(n, T ) = ~ .  v (qlT)" e-"ZTPo(I) . 2~ Id I  (3.16) 
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is always wider than the Poissonian distribution, since Po can, at the most, 
represent a deterministic process, by assuming the form of a delta function, 
i.e., 6(1-1o) and additional noise can only widen the distribution. 
Therefore Mandel's Q-parameter for a classical process is always limited to 
positive values: 

Q~>0 (3.17) 

Classical photon statistics is bound to results in super-Poissonian dis- 
tributions and therefore sub-Poissonian densities can only exist in the 
quantum limit, where we must abandon the requirement of positive 
definiteness. 

(iii) The variances of the quadrature components of the field X § and 
X have a general lower bound 

(3.18) (I~i ]2 1)  1 ( ( 3 X ) 2 > =  (E*-E) +~ >~-~ 

which means that in a phase-sensitive experiment, the variance are 
necessarily larger than I/4 and a classical system will never exhibit 
squeezing as is possible in the quantum domain. The last definition above 
will become more transparent when formulated directly in quantum 
mechanical terms. 

3.2. Q u a n t u m  M e c h a n i c a l  M o d e l s  

For the present purposes we will assume that the atomic coherence 
and the excited state populations decay on a short time scale, much shorter 
than the time scales on which the field evolves. This enables us to eliminate 
the atomic dynamics adiabatically--as in the semiclassical regime--and we 
are left only with the problem of the field itself. The field coupled to a 
thermal reservoir is subject to dissipation but it may also experience noise 
through an incoherent pump mechanism. As a result, the dynamic process 
becomes irreversible and has to be described by a master equation, a 
master equation now for the field: 

dP_dt hiEH'p]+( dp )--d[ irr (3.19) 

The irreversible part of the time evolution is typically of the form 

{dp~F1 F1 F2 F: ~ irr=-~-[b, pb*]+-~[bp, b*]+~-[b*,pb]+-~-[b*p,b] (3.20) 
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where F 1 = F(nth + 1) and F 2 = F r i t h .  The reservoir is assumed to be in 
equilibrium at a certain temperature T, and the thermal population of the 
resonant reservoir mode is 

nth = [exp(hoa/kT) - 1 ] - 1 

F is the rate of relaxation of ( b ' b )  into the vacuum, and b t and b are the 
creation and annihilation operators for a given field mode. For problems 
with more than a single excited mode, the master equation contains similar 
terms for every mode present. Expanding the statistical operator on the 
basis of the Fock states of the field, we may write 

p ( t )=  ~ [n>p,.m(t)<m[ (3.21) 
n,m~O 

and the dynamic equation for the density matrix elements can formally be 
written as 

dpn,  m 
dt = Z A~/mPi, J(t) (3.22) 

i , j  

The generator A of the time evolution summarizes the reversible, 
Hamiltonian contributions as well as the irreversible ones. In general this 
matrix equation is rather difficult to handle, and for realistic problems the 
diagonalization must be performed numerically on a truncated basis. 
However, the intuitive physical insight into a given problem provided by 
this matrix formalism is rather limited, and it is not immediately clear how 
to insert, for instance, simplifying assumptions that are consistent with the 
requirements of a master equation. 

For that purpose, the quasi-probability representation developed by 
Glauber and Sudarshan in the form of the P-representation (7"8) is much 
more useful, since it crreates an intuitive picture for the physical process, as 
well as a formalism quite similar to those of classical statistical physics. It 
can be shown that p can always be represented by a c-number function 
P(e, e*, t) if we generalize the admissible function space and also allow for 
distributions such as the delta function and its derivatives: 

p(t)=fd2cz [= > P(~, ~*, t )<~]  (2.23) 

From the knowledge of P(c~, ~*, t) one can calculate all relevant ensemble 
averages, provided they have been arranged in normal order first: 

(bt~b m) = f ~*"~"P(~, ~*, t) d2~ (3.24) 

822/54/'5-6-10 
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Instead of the matrix Pn, m which evolves according to the matrix equation 
above (3.22), one can describe the process now by a real function of the 
continuous variables c~ and c~*, as in classical statistical mechanics. The 
master equation for p then turns into a partial differential equation for 
P(c~, c~*, t), which typically is of the following form: 

OP(c~, c~*, oc~O (d_  )~ l~12) ~p(~, ~., t)__~_g ( d_  z l~12) c~. P 

1 02 
+ ~ Q ~-~-~ . P ( c~, e * , t) 

/ 0 2 0 2 

+ X ~-d~2 od + ~ + ... a,2 ,1 P(~, t) ~*, 

0 3 0 3 
+ 0c~3 &r + --. (3.25) 

d represents an external control parameter, )~ is the nonlinear coupling con- 
stant, and Q is the strength of additive noise. At a first look, the structure 
of this equation seems quite familiar, since to a certain extent it resembles 
the Fokker-Planck equation of classical statistics. At a closer look, 
however, we realize that the diffusion matrix associated with this equation 
is not necessarily positive semidefinitive (i.e., when )~ r 0) and the resulting 
equation is not of Fokker-Planck form. Also, the terms indicated by the 
dots in the last line, which stand for possible higher order derivatives, must 
be negligible in order to allow for such a statistical interpretation. Provided 
this is the case, the dynamics of a quantum statistical problem can be cast 
into the form of a purely classical stochastic process and the only trace of 
the inherent quantum nature left is the required ordering of the operators. 
The diffusion term, proportional to Q, can contain contributions that may 
be of classical or of quantum origin. If we choose a thermal reservoir, as in 
the example indicated above, Q is proportional to the thermal population 
nth, while in case of an incoherent pumping process, Q scales with (nth + 1) 
and remains finite even for vanishing temperatures. This demonstrates 
intuitively that classical fluctuations, as well as quantum noise, which is 
responsible for the 1 in (rtth + 1 ), enter the formalism on quite equal footing 
and their influences merely add up. 

This is quite different when we consider the other terms in the 
evolution equation, which are also of second order in the field derivatives 
(i.e., Q = 0 and Z ~ 0). In this case the equation above is by no means a 
Fokke~Planck  equation and a corresponding classical stochastic process 
does not exist. We still may use the term noise, but now in a more abstract 
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sense. This will become clearer by presenting two illustrative examples: a 
linear oscillator with gain, and a parametric process, where the "diffusive" 
terms originate from the reversible part of the dynamics. 

A linear harmonic oscillator which experiences gain through the 
coupling to an incoherent source may be described by the following 
Fokker-Planck equation~9): 

r ~*, t) r ~ 02 
Ot = - O - - ~ F T P - ~  F ~ * P + 2 F ~ P ( ~ ,  ~*, t) (3.26) 

where F represents gain, which is inevitably accompanied by quantum 
noise. The solution for this process is obtained straightforwardly, since it is 
virtually identical to the celebrated Ornstein-Uhlenbeck process. When the 
trajectories initiate from the vacuum at t = 0 ,  then the average field 
amplitudes ( ~ )  and ( ~ * )  remain zero for all times, while the photon 
number builds up from zero, intuitively speaking, due to the action of the 
intrinsic quantum noise: 

(bt(t)  b(t))  = exp(Ft) - 1 (3.27) 

In the short-time limit we find 

(bt(t)  b(t) ~ = Ft (3.28) 

This is quite analogues to the well-known result for Brownian motion, 
where the square of the distance x2(t) from an initial position grows 
linearly in time. This clearly demonstrates that quantum noise can behave 
qualitatively similar to classical noise, resulting in a diffusive motion. 

Another quite simple example will demonstrate that this is not always 
the case, and quantum noise can behave quite differently. The linearized 
model for the generation of a subharmonic field is given by the following 
Hamiltonian: 

H = hcob~b + igh(b2e 2i~ - bt2e 2io~,) (3.29) 

where co is the frequency of the subharmonic field and g is the nonlinear 
susceptibility or the coupling constant. In the rotating frame the explicit 
time dependence can be eliminated. In order to make the model a little 
more realistic, we add the coupling to a zero-temperature heat bath, which 
introduces dissipation, but no additional noise. The corresponding master 
equation for P(c~, cr t) can be written in the form 

r p___~__~ 
0P(~, ~*, t) = -~--~ (--y~ + g~*) Oo~,(--~ot*+go~)P 

{02 
+ g,~_2+-z--~,2, P(~, ~*, t) (3.30) 

\ucz- oo~-,-i 
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?, is the damping constant and g is the nonlinear susceptibility. This is 
obviously not a Fokker-Planck equation and therefore we cannot expect 
to obtain a diffusive motion as in the previous case. A formal solution of 
this equation, however, can be found quite easily, involving delta functions 
and their derivatives. Starting in the vacuum state at the initial time t = 0, 
we find with ~ = x + iy 

where N, 

E P(x, y, t )=  N exp[ +a(t )  x 2] exp -b( t ) -~y  z 6(y)  

N =  (7 - 2g) 1/2 (1 - e {2g y)t)--I 
7zg 2 

is the normalization factor and a(t) and b(t) are given by 

- 2g 
a(t) - 

g ( l_e (2g  ~)l) 

(3.31) 

b ( t ) -  1 g (1 - e  -~2g+~)') (3.32) 
4 7 + 2 g  

This is only a formal result, but nevertheless it is a very useful tool for 
calculating transient moments. While the first moments ( e )  or ( ~ * )  
remain zero again, the second moments, such as the field intensity, 
experience the instability. They are triggered by the quantum fluctuations, 
and evolve in time according to 

(x( t )2)  1 g (1--e  (2g-~')t) 
2 7 - 2 g  

(y( t )2)  = 1 ~ (1 --e (2g+?)t) (3.33) 
2 7 + 2 g  

One should notice the rather unexpected result that the second moment of 
y, where y = Im(c~), becomes negative. However, since [ Im(e) ]  2 is not an 
observable, this is not in conflict with experimental results. Observable, for 
instance, is the intensity of the field ( b * ( t ) b ( t ) ) =  ( x 2 ( t ) +  y2(t)) ,  which, 
for short times, as can be shown, does not feel the effects of dissipation, and 
therefore has to exhibit a time-reversal dynamics. This is indeed the case in 
the present example, and up to second order in t we find 

(b*(t) b(t) ~ = g2t2 + O(t 3) (3.34) 
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Obviously, this result is possible only since the diffusive linear term ~ t  
which appears in (x  2) is canceled by an indentical term originating form 
( y 2 )  but with the opposite sign. Thus, the cancellation is only possible 
because ( y 2 )  is not positive definite. 

When comparing these two results, it is obvious that quantum noise 
can act in various ways. It can appear quite similar to classical noise and 
result in a purely random and diffusive behavior as demonstrated in the 
first example, or it can behave rather different from a classical stochastic 
process, by retaining the time-reversal symmetry of the underlying 
Hamiltonian dynamics. Common in both cases is the fact that either form 
of quantum noise has the ability to trigger the onset of time evolution 
when, in the classical limit, we have an unstable stationary point. Among 
the present examples, the latter one was rather peculiar, since there did not 
exist a positive probability density, but only a quasiprobability expressed in 
delta functions. 

When choosing a positive distribution function P(a, a*, t) at the initial 
time t = 0, the function will remain positive for all later times in the first 
example, and all the classical inequalities (3.15)-(3.18) will still hold in the 
quantum case. In the second example, however, the distribution function 
assumed negative values in the course of time and consequently these 
inequalities can be violated by such processes. In general we find that: 

(i) The function 

G2(t) = f (~* - ( ot~* ) ) 2 P(~, or*, t) d2o~ (3.35) 

is not necessarily positive and antibunching ~1w13) becomes possible. 

(ii) The photon counting probability 

W(n, T)= f ~. (~l~*T)n exp(-rl~*T) Po(~, ~*) d2~ (3.36) 

can be narrower than the Poisson distribution, (13 15) since P0 is not restric- 
ted to positive values. P0 is the stationary distribution, and for simplifying 
the result, we have assumed that T is short compared to the correlation 
time of the field, quite similar to the assumption used for the classical 
example above Eq. (3.16). 

(iii) The variance 

11 ~,)2 t) d2~] (3.37) (~x2(t)> =~ l+f(~+ e(~, ~*, 

is not necessarily larger than 1/4 and squeezing (16-18) becomes possible. 
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In general, classical and quantum noise can be present simultaneously. 
A typical example would be the previous parametric process, but now 
interacting with a finite-temperature heat bath in addition. This results in a 
competition between classical and nonclassical effects. When the first ones 
dominate, classical behavior will be observed, and consequently there exists 
a regular, positive probability density for 

g < z ~ 7  

On the other hand, when this inequality is violated, a positive distribution 
may only be prepared initially, but in course of time it will develop regions 
of negative values and nonclassical behavior previals. 

3.3. The Positive P-Representat ion  

With the term noise or fluctuations we always associate an irregular 
temporal behaviour, typically something like the classical Brownian 
motion. In quantum mechanics the term fluctuations arises, since there all 
physical observables are expressed in terms of ensemble averages of 
operators and the variances of such quantities in general do not vanish. 
This is reminiscent of classical statistics and one might be tempted think of 
quantum noise as some kind of random process. This, however, is not the 
case and we will see that we cannot associate a Langevin equation with 
every quantum dynamical problem. 

The use of the quasiprobability concept has the advantage that it uses 
the same language for both cases and it allows one to utilize the methods 
developed for classical stochastic processes also in the quantum case. For a 
nonlinear dynamic problem, the drift and the diffusion coefficients become 
nonlinear, and a solution of the partial differential equation becomes 
increasingly more complicated, the more variables that are involved. 
However, in cases where the dynamics follows from a genuine classical or 
quantum Fokker-Planck equation, there exists an alternative concept, the 
statistically equivalent Langevin equation. Representing only a set of 
ordinary differential equations, they are easier to handle and at least can be 
simulated numerically without major difficulties. This may not be the most 
elegant way to solve a statistical process, but it is nevertheless useful for 
gaining a first insight into a new phenomenon. This remedy, however, can- 
not cure the problem in the case where the quantum fluctuations display 
their typical nonclassical behavior. In such a case, when the Fokker- 
Planck concept breaks down and variances become negative, due to the 
negative regions in the distribution function, a corresponding Langevin 
equation does not exist in principle. 
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Drummond and Gardiner (19'2~ nevertheless have found a way out of 
this dilemma, by defining an alternative quasiprobability concept on an 
extended phase space with a distribution function that remains positive for 
all times. This enables one to find a Fokker-Planck equation for all quan- 
tum processes, irrespective of the form of the diffusion coefficient, provided 
that the equation for P(e*, c~, t) can be approximated by a second-order 
differential equation. The new quasiprobability, the so-called positive 
P-representation, is defined on an enlarged phase space and depends on 
(e, e*) and an additional pair of variables (ft. fl*) for each mode of the 
field: 

P(c4 ~*, fl, fl*, t)~>O (3.38) 

Ensemble averages of normally ordered operator products are then 
calculated in the following way: 

( (b*) n ( b ) m ) ,  = f f  d2a  d2f l ( f l )  n (a)  m P(c4 fl, t) (3.39) 

It can be shown that the evolution equation for P(c4 fi, t) is easily found, 
provided the equation of motion for P(c4 c~*, t) is known, by merely 
replacing 

~ ~ and ~* ~ fl (3.40) 

For any given statistical operator one can prove that the positive 
P-representation does exist, but it is not unique, as one may expect from an 
expansion in an overcomplete set of basis functions. 

The usefulness of this concept may most clearly be demonstrated by 
the use of an explicit example, like the previous problem of a linearized 
parametric process, where the Glauber representation yields a complex 
solution in terms of deltafunctions and their derivatives. By replacing a* by 
fl we find the following equation for P(~, fl, t): 

0 ( 0  2 
c?--~ = - c~--~ ( - ? a + g fl ) P - ( - ? fl + g ~ ) P + g \ ~a 2 + - f f~  j P ( ~, fl, t ) 

(3.41) 

Due to the analytic structure of this method, we can identify the derivatives 
either by 

0 O ~? 0 
and (3.42a) 
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or by 

and (3.42b) 
O~ Oiy Off Oiv 

where ~ = x + iy and 3 = u + iv. Thereby the diffusion matrix in this simple 
example can explicitly be made positive semidefinite by choosing 

c~ 2 c~ 2 c~ 2 02 
~ 2  {- ~ -~- ~X2 q- (~b/2 (3.43) 

The Langevin process corresponding to this Fokker-Planck equation is 
given by the following set of stochastic differential equations: 

2 =  - T x + g u + ~ l ( t  ) and 

fi = - T u  + g x  + ~2(t) and 

= - T Y  + gv 
(3.44) 

(J = - T v  + gy  

The fluctuating forces ~1 and ~2 represent two independent Gaussian white 
noise forces: 

( ~i(t) ~j(t ')  > = 6ijgl/26(t  - t ')  (3.45) 

If the dynamics would be nonlinear, this could be the starting point for a 
numerical simulation. In the present case, however, the problem can be 
solved quite easily and we can find the probability distribution for all times 
in closed analytical form. 

As a first step we may be interested in the stationary solution of 
Eq. (3.41), which can be shown to assume the following form: 

1 
P(~, fl, t -* Go) = Po = - (2 - 1) 1/2 exp[ - 2 ( x  2 + u 2) + 2xu]  6 ( y )  $(v)  /'C 

(3.46) 

where 2 = 7/g > 1 is the only relevant parameter in the asymptotic limit. 
This inequality guarantees the validity of the linearized model, by 
restricting it to the subthreshold region. The stationary moments are easily 
found by simple quadratures: 

The intensity of the field 

1 2 
( b ' b >  -- 2 ;t z - 1 (3.47) 
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The variances of the field 

/ ( ~ - - ~ ) 2 )  -142-12 (3.48) 

I( b * - b ~ 2 \  - 1  2 (3.49) 
\--SV-i j / 42+1 

It is obvious that the variances of the real and imaginary parts of the 
field no longer satisfy the inequalities set by the classical dynamics and 
sqeezing becomes possible. The time-dependent solution is found by 
straightforward integration. It describes the transient relaxation toward the 
equilibrium state. Starting from the vacuum at t = 0, we find 

where 

P(x, y, u, v, t) = N exp[ --D(x 2 + u 2) -- 2Fxu] 6(y) 6(v) (3.50) 

1 (22- 1) 1/2 

D -  

TC [1 + e  2~'-2cosh(gt)  e-~']l/2 

2 + e ~'[2 cosh(gt) + sinh(gt] 

F =  

1 + e 2~,_ 2e-~t cosh(gt) 

1 - e-~'[2 sinh(gt) + cosh(gt] 
1 + e -2~t-  2e ~t cosh(gt) 

With this brief review of the qualitative properties of quantum fluctuations 
and the mathematical tools available to treat such processes that are 
dominated by quantum noise, we close this section and turn to explicit and 
quantitative examples in the next section. 

4. EXAMPLES OF Q U A N T U M  OPTICAL PROCESSES 
WITH NOISE 

In the previous sections we have presented a number of basic concepts 
of quantum optics as much as they pertain to questions of noise. We have 
also discussed the mathematical framework for describing and solving the 
corresponding statistical equations. In the present section we will now 
make use of these concepts and discuss several physical examples in more 
detail, where we emphasize especially the role of fluctuations. We will not 
go through elaborate mathematical derivations, but only motivate the 
structure of the physical models and their noise properties. Then we turn 

\ 
directly to the explicit solutions and discuss their physical interpretation 
and consequences. 
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4.1. The Laser w i t h  Addi t ive  and Mul t ip l ica t ive  Noise 

The most important problem in quantum optics is unquestionably the 
laser. The theoretical description is well established and in good agreement 
with experiment. Nevertheless, new experiments have recently revived 
interest in alternative theoretical models by taking into account fluc- 
tuations different from the pure spontaneous emission noise. Considering a 
certain randomness in the dissipative couplings leads to a laser model with 
multiplicative noise. This concept was not widely used in the past, and it 
was mostly the example of the dye-laser that has demonstrated that mul- 
tiplicative processes really occur in nature. In the meanwhile, a great deal 
of theoretical as well as experimental work has appeared in this field. The 
"classical" laser model can be understood as the generic nonlinear process 
driven by additive noise. The laser models with loss or gain fluctuations 
can serve as the standard process with multiplicative noise, expecially since 
an exact analytical solution exists for the stationary as well as the dynamic 
equations. 

4.1.1. The Laser with Spontaneous Emission Noise. When spon- 
taneous emission noise dominates, we find the "classical" laser model, 
treated in great detail by many authors. For this reason we will only briefly 
list here the main results, serving as a reference for comparison with the 
additional laser models we discuss below. By eliminating the rapidly 
relaxing atomic degrees of freedom in favor of a slow-field mode, we find 
the following stochastic model: 

dE/dt = ( d - I E I  2) E +  ~(t) (4.1) 

where Re(d) represents the balance of gain and loss, and Im(d) is the 
detuning between atoms and field, which we will disregard in the following. 
~(t) describes the stochastic influence of spontaneous emission in Markov 
approximation: 

( ~(t) ~(t') ) = Q6(t- t') (4.2) 

The corresponding Fokker-Planck equation is the celebrated "laser 
equation"(21,22): 

0--t -= (d - lE I  E P -  (d*-IEI2)E*P-~ 2OE~E~P (4.3) 

where P = P(E, E*, t). The stationary solution for this process can be given 
in closed form, since the condition of detailed balance happens to be 
satisfied: 

Po(E, E* ) = N exp [Q ( d ,E, 2 -1  [El4)] (4.4) 
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N is the normalization constant, containing mainly for the error function. 
This analytic result allows one to calculate all stationary moments and the 
classical photon counting statistics explicitly. 

(i) The field intensity (tEl 2) grows slowly from very small values 
below threshold, d <  0, and then smoothly turns over into a linear rise well 
above threshold, d > 0: 

( tE I2 )=Q/d  for d ~ - I  
(4.5) 

( tE l2)=2d/Q for d~> +1 

(ii) A measure for the randomness of the field intensity I =  IEI 2 is the 
relative variance: 

(AI  2) (12) -- (1)  2 
( i ) 2  ( i ) 2  (4.6) 

which starts from (AI  2) = 1 well below theshold, indicating a violently 
fluctuating field, until it falls off like (AI  2) = Q2/2d2 well above threshold, 
where the nonlinearity dominates and stabilizes the laser amplitude. 

(iii) The photon counting statics can be calculated directly from the 
stationary distribution in the limit, where the correlation time of the field is 
long compared with the experimental observation time T: 

fo ~ 1  W(n, T) = ~. (fliT)" exp(-- r/IT) Po(I) dI (4.7) 

The fluctuations of the photon number are easily related to the moments of 
the field intensity: 

(n 2) - ( n )  2 1 
(n )  = q T ( I )  @)2  - (312)  + (n----) (4.8) 

The second formula clearly demonstrates how the counting statistics 
changes from the equilibrium distribution of the Bose-Einstein statistics 
well below theshold, d ~  - I ,  (AI  z) = 1, into a Poisson process when the 
amplitude is stabilized well above threshold, d>> +1, (AI  2) =0. 

The essential dynamic properties of the laser process are contained in 
the field- and the intensity-correlation functions: 

Gl(t) = (E*(t)  E(0)), G2(t) = ( I ( t ) / (0) )  (4.9) 

which in the threshold region are dominated by a single exponential: 

Gl(t) ~-- exp(--2~t), G2(t) ~- exp(--A~ (4.10) 



1 2 6 4  S c h e n z l e  

where 

1 
- d f o r  d <  -1 and 2ol'-~/for d>  +1 

2~ - d f o r  d <  - l a n d  2 ~  2d for d>> +1 

These results are illustrated qualitatively in Figs. 1-5. 

4.1.2. Laser with Loss Fluctuations. The most interesting regime 
of laser operation in theory is the immediate neighborhood of the 
threshold. There, all attempts to linearize the dynamics are bound to fail 
and the problem exhibits its full nonlinear behavior. This is quite obvious, 
since in the threshold regime neither the lasing nor the random spon- 
taneous emission mode is globally stable and the competition persists. The 
traditional laser model has been found to be in excellent agreement with 
experiments close to threshold and for a long time there was no reason to 
generalize the model. Experiments on dye-lasers, (23'24) however, suddenly 
revived the search for alternative laser models, since the discrepancy of 
those new results with theory was quite dramatic. When interpreting the 
experimental results, it became clear soon that it is the additive noise 
assumption that poorly models the dominant fluctuations in the previous 
theories and that multiplicative noise should be responsible for the unusual 
behavior. 

One possibility for multiplicative noise is a certain randomness in the 

Fig. 1. 
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(d= 1.5). 
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Fig. 2. 
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Fig. 5. Smallest eigenvalue of the Fokker Planck equation describing intensity fluctuations. 

dissipative mechanisms, which causes the linear gain parameter d to 
fluctuate about a certain average value, leading to the following model(a5/: 

dE 
d--}- = ( d - ] E l  2) E +  ~t ( t )+  E{2(t ) (4.11) 

where ~1 describes the ever-present spontaneous emission and r the noise 
associated with the loss mechanisms. To emphasize the role of ~2(t), we 
assume that it is the dominant source of noise and we neglect for the 
moment spontaneous emission entirely. In order to construct the simplest 
model possible, we further assume that the real and the imaginary part 
of 42 are represented by two independent Gaussian white noise fources 
of equal strength. The corresponding Fokker-Planck equation for 
E = r exp(i~b) then reads(26'27): 

~?t- r& r dr-r3-t--~-~rr)P +~-~P(r,(b, t)  (4.12) 

The phase invariance of the problem suggests the following eigenfunction 
ansatz: 

P(r, (~, t) = pm(r) exp(im~b) exp(--2mt) (4.13) 

The steady-state solution P~ ) is easily obtained and we find for d >  0 

P~ =-Tzl Q 't/QF-I (Q) r-2+2d/Q exp( 1 -Q r2 (4.14) 
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The most remarkable feature of this process is the fact that the dynamic 
eigenvalue problem can also be solved analytically, in contrast to the 
"classical" laser process, which has never been solved in analytical form. 
We find 

( 12) pm(r, O)=Nr-2+2a/Q-2nexp - -~r exp(imq~) 

x i f l  - n , ~ - 2 n +  , Q r  2 (4.15) 

with the corresponding eigenvalues 

N is the normalization constant. The integrability condition for the discrete 
spectrum can only be satisfied for 

d/Q > 2no 

where no is the largest natural number that satisfies the inequality above. 
no + 1 is the number of discrete eigenvalues, including the steady state. 
Above the discrete spectrum of relaxation rates 2~ there exists a continuum 
of eigenvalues 2, very analogous to the quantum mechanical problem oi ~ a 
one-dimensional potential well. The eigenfunctions that generate the 
continuous branch of the spectrum are found in the usual way by relaxing 
the condition of square integrability. The properties of the continuum may 
even dominate the dynamic behavior, when the laser is operated close to 
threshold, i.e., d/Q < 2, where there exists no discrete eigenvalue besides the 
steady state. 

With these explicit results it is possible to determine all relevant 
physical properties in analytical form, such as the stationary moments and 
correlation functions. Experimentally, it is much easier to measure the field 
intensity and its temporal correlations. Therefore it is useful to formulate 
the corresponding process for I =  [E[2 directly: 

dI 
dt (F-- ~c) I -  FI ~ + I~(t) (4.17) 

and 

~?P(I)_ ~_ i (F_~c_Fi ) iP+~_ i i~ iP  (4.18) 
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where F is the gain and K the loss parameter. This form is also helpful for 
comparison with the results we discuss below. In order to have a consistent 
notation, we have not normalized the intensity in these two equations. In 
this notation, the average intensity of the laser is given by the simple 
relation 

<I> = ( r -  K ) / r  

while the relative variance of the intensity assumes the following form: 

<dI2>/<I> 2 = 1 / ( F -  K) 

These results are limited to the regime d =  F--rc  > 0, since for d <  0 the 
additive spontaneous emission noise can no longer be neglected, as it is the 
only remaining noise, which prevents the system from collapsing into the 
vaccum E = 0. The variance of the present process is not bounded from 
above and can grow to arbitrary large values close to threshold. The actual 
divergence is prevented by the addition of weak additive noise. This 
behavior is in satisfactory agreement with the experimental observations 
made on the dye-laser system Fig. 6 and it is in strong contrast to the 
traditional laser theory. 

With the explicit form of the stationary distribution Po(I) 

Po(I) = r r -  * / r o ( r -  ~) I r -  ~- le ri 

I I 

Fig. 6. 

I I I I 
<(Al)2> 

<1>2 

t 0 0  

10 

J I I J f 

0.5 1.0 1 0 2.0 2.5 < n >  

Relative variance of the intensity. Comparison of--theoretical result with (�9 
experiment. 



Noise in Nonlinear Optical Systems 1269 

we can also obtain the photon counting statistics W(n, T) 

1 F" " Fo(n + F - -  to) 
W(n, T)= (tiT) n 

n! (r+~IT) ~+r-~ r o ( r - , O  

which is compared with experiments in Fig. 7. The F0 is the gamma 
function, not to be mixed up with the F parameter of the model. Here, 
too, the qualitative agreement between theory and experiment is rather 
satisfactory. 

Also, the experimentally observed relaxation of intensity fluctuations 
indicates that the classical laser model does not apply in the case of the 
dye-laser. The classical laser model predicts an almost exponential decay of 
the two-photon correlation function. In the experiment close to threshold, 
the intensity correlation function is clearly not governed by a single decay 
rate. However, this property is an immediate consequence of the present 

Fig. 7. 
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multiplicative noise model. Since close to threshold, i.e., d/2Q < 1, the spec- 
trum of relaxation rates becomes purely continuous, there is no a priori 
reason for observing a simple exponential decay. The corresponding 
correlation function can be calculated analytically up to a final quadrature 
with the use of the continuous eigenfunctions. The theoretical result is 
plotted and compared with experiment in Fig. 8. 

This example demonstrates that muttiplieative noise is not only of 
interest from a mathematical or academic point of view, but that it is a 
relevant source of noise appearing naturally in physical systems. 

4.1.3. Laser with Gain Fluctuations. The physical motivation 
behind the previous model was based on the idea that the control 
parameter d was not entirely under external control, but subject to fluc- 
tuations d--* d+  r Physically speaking, d represents the balance of gain 
and loss and one might attribute these fluctuations either to the pumping 
or to the damping mechanism. At a closer look, however, it is clear that 
this form of noise can only model the randomness of dissipation. The gain 
factor not only enters d, but also the parameters that scale the nonlinearity 
of the laser model. However, when considering the possible physical origin 
of such external noise, then fluctuations in the pump parameter seem to be 
the most likely source of randomness. They may result from fluctuations in 
the dye-jet or from a noisy pump laser. We will present a model with such 
noise properties here. 

Fig. 8. 

I i I i ] I I I I 

I I I I I 

10 20 30 40 50 

. . ' . , . ' ,  , . , , , .  , , . . , , , . , , ,  

I I I I 

K(t) 

2.0 

1.5 

1.0 

0.5 

60 70 80 90 

' 0 

t~sec 

Normalized intensity correlation function. Comparison of (--) theory with (.) 
experiment. 



Noise in Nonlinear Optical Systems 1271 

In terms of the field intensity, the model that describes pump 
fluctuations is of the following form(28): 

d I  
d t =  ( F -  K) I -  I l l  2 + I(1 -- I) ~(t) (4.19) 

where ~(t) is a source of Gaussian white noise: 

( ~(t)  ~(t  = 0 ) )  = 6 ( 0  (4.20) 

is the cavity damping constant and F the gain factor, i.e., F -  • = 0 deter- 
mines the laser threshold. The Fokker-Planck equation corresponding to 
this Langevin process is given by 

~P Q 0 
0---~ = -~I ( F - t c - F I ) I P + - ~ I  ( 1 - I ) - ~ ( 1 - I ) P ( I ,  t) (4.21) 

The stationary solution of this model is found by direct integration: 

K F  K I F -  ~ 1 

Po( I)  = Fo( F - K) (1 -- I) r K+ 1 e ~i/~, - ~) (4.22) 

where we had to use the symbol F0 again for the gamma function. 
The dynamic problem can also be solved analytically and we find aga!n 
a discrete and a continuous branch of the spectrum. The discrete eigenvalue 
problem is solved by 

p , ( i ) = N , i  r . . . .  l ( l _ i ) - r + ~ + n  1Lr- ,~-2,  (K]_..~) e ~,/,, i) (4.23) 
% / 

with 

N, - 1 ~2~r . . . .  ~ n ! ( F -  ~c - 2n) 
- -2 F o ( F -  K) F o ( F - -  ~ + 1 - n)  (4.24) 

and the eigenvalues are given by 

2 , = n ( F - ~ - n )  with 2 n < F - - K  (4.25) 

L m are the generalized Laguerre polynomials. Besides this finite number of 
discrete eigenvalues there is a continuum, characterized by a parameter s :  

Ps( I )  = N1s/2I ( r -  ~ - 3)/2( 1 - I) (- r+ ~- 1) 

( ~ I ) e - ~ / 2 ) u / < l  ' n  (4.26) X Wl/2+(F_lc)/2,  is/2 
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where W,(x) is the Whittaker function and 

1 sinh(~s) F0 ( F sc ; ) 2  
N,-(21t)2~cr_~_1SFo(F_K ) - - ~ + ~ +  (4.27) 

The eigenvalues are given by 

1 2s=-z[(F-x)2+s 2] for s > 0  (4.28) 
4 

With these explicit results we can calculate again the stationary as well as 
the dynamic properties. The stationary moment of the intensity I is 

( I )  = ( F -  ~c) ~ r -  ~ e ~ ( - F +  ~c, re) (4.29) 

where 7(x, y) is the incomplete gamma function. The second moment 
becomes rather unwieldy and we only give here the asymptotic result for 
tc>>F--K: 

( 1 . . . . .  tc tr 2 ( F - x + 2 ) +  ~: ) (4.30) 

In this limit we find for the relative variance of the intensity fluctuations 
the following result: 

(AI2-------~)= l-~--[ 1 - 2 ( F - x + l )  2 F - ~ c  (4.31) 

which obviously generalizes the previous expression. The intensity 
correlation function in the regime of the discrete spectrum can be found 
analytically, but it is rather complicated in form. For large times the 
correlation function is dominated by the slowest eigenvalue: 

(I(t) I(t=O))=(I)2+Aexp(--21t), ) ~ l = f - t r  1 (4.32) 

where A is a rather involved factor of the order of (12) - (I) 2. Very close 
to theshold, where the spectrum is entirely continuous, the correlation 
function can be calculated analytically for F - ~  ,~ tc up to a final integral 
over the eigenvalues s. The results of the numerical integration are shown 
together with the experimental curves in Fig. 9 and the agreement is 
satisfactory. However, since the differences in the theoretical results, from 
model to model, are not really substantial at the moment, the fluctuations 
cannot be traced back to any specific physical source with certainty i.e. to 
gain or loss fluctuations. Nevertheless, one expects that noise in the pump 
field is responsible for this behavior and that the present model provides 
the most realistic description. 
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Fig. 9. Normalized intensity correlation function for a model with gain noise. Comparison 
of ( - - )  theory and ( - - )  experiment. The distance from threshold increases from (a) to (c). 
The control parameter F - x  was taken to be 0.52, 1.05 and 1.85 in (a), (b) and (c) respec- 
tively. 
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4.1.4. Laser with Multiplicative Nonwhite Noise. We have been 
looking for possible generalizations of the standard laser model, in order to 
describe the fluctuation behavior of the dye-laser. Since the physical source 
of noise is not known precisely, it is impossible to judge the validity of 
the white noise assumption at the moment. It is of interest therefore to 
investigate the properties of a laser model with nonwhite multiplicative 
noise. 

A standard generalization of white noise models, which does not leave 
the framework of Markov processes, introduces an auxiliary variable y(t). 
This variable has no immediate physical meaning, nor can it be measured 
directly, y(t) acts as the noise source undergoing the traditional dynamics 
of an Ornstein-Uhlenbeck process, (29,30) 

dI 1 
d--}= ( d - I )  I + - I .  y 

(4.33) 
dy 1 1 
d-; = - T y + ~ ( t )  

with 

(~(0 4(0)) = 6U) 

y(t) is exponentially correlated on a time scale ~ 2. The joint process is still 
a Markov process, with a Fokker-Planck equation for the joint probability 
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W(I, y, t). Since we are not interested in any correlations between I and y 
explicitly, it would be entirely sufficient for all applications to calculate the 
reduced distribution W(I, t), integrated over y: 

w(L t) = f e(I, y, t) dy (4.34) 

At present, we are only interested in the limit of large but finite-bandwidth 
noise i.e., e ,~ 1. In this limit it is possible to eliminate the dummy variable y 
explicitly and derive a closed equation for W(I, t) alone(29'3~ 

0 0 1 0  I c3 W ( I, t ) O t = - -~-I ( d - I ) I W + ~i -~ ( 1 - f l I )  W 

+ e2D (I, ~ )  6(I-- l~ 6(t) 

with 

(4.35) 

f l - l = d + e  2, 

For simplifying the expressions we have rescaled the variables: 2d/Q-~ d 
and e2/Q ~ e2. This reduced equation differs in an essential way from a 
genuine Fokker-Planck equation since it does not establish a Markov 
process on the reduced phase space. Due to the elimination of the auxiliary 
variable y, the equation for W does not properly reproduce the short-time 
behavior either. For this reason, the initial conditions have to be renor- 
malized properly, in order to account for the rapid transients in the time 
interval e -1. This is provided in Eq.(4.35) automatically by the 
inhomogeneity. The diffusion constant of this process is not positive and 
assumes negative values for I >  fl-1. However, this regime is not accessible 
for a random trajectory that originates in the physical interval 0 < I <  fl-~, 
since at the boundary of this regime, the deterministic forces are repulsive 
and the noise vanishes. 

The stationary solution of the evolution equation is easily obtained in 
the form 

F ( d +  1/e 2) 
Wo(I) = fla V(d) V(1/e 2) Ia-  ~(1 - flI) ~/~2-1 (4.36) 

Also, the dynamic process is readily solved when we recognize that the 
eigenvalue problem corresponding to Eq. (4.35) can be transformed into 
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the defining equation of the Gauss hypergeometric functions. By applying 
the appropriate integrability conditions, we find 

Wm(I)=NI d m x(1-flI)  ~/~2 12F~(-m, fl ~ - m ; d - Z m + l ; f l I )  (4.37) 

and the eigenvalues are 

2 m = m ( d - m  ) for 0 < m < m  o 

where mo: d - 2 < 2 m o < d  

The normalization constant follows from 

f01/e w~(I) . aI= 1 (4.38) 

The stationary properties of this process are obtained quite easily and we 
find for the moments of the intensity in general 

( In)  = fl_, F(d + n) F(d + 1/8 2) 
F(d) F(d + n + 1/52) (4.39) 

and especially 

(x) =d  

1 +de 2 
( I 2 ) = d ( d +  l) 

1 q- g2 --]-- dg 2 

( A I  2 } 1 
( I )  2 _ d ( l + g 2 + d g 2  ) 1 

These results obviously generalize the previous white noise expressions and 
in the limit 5--+ 0 we recover the old results again. The photon counting 
distribution is found by direct integration to be of the form 

1 (,_T'] n -~-~-I'(--~n+F(d+ 1/fl)F(d+n)l/52) ( 1 I T~ W(n, T)=~-7 \--~- j 1F1 d+n; d +  52," (4.40) 

Besides the discrete spectrum of eigenvalues there also exists a continuum, 
which close to threshold dominates the relaxation again. The correlation 
functions, however, are hardly manageable and one has to expand the 
exact expressions above. In leading order in 5 one can calculate the 
relaxation of the transient moments and the correlation functions (Fig. 10). 
But even then, a final quadrature is left for numerical evaluation and we do 
not arrive at compact analytical expressions. 
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Fig. 10. Normalized intensity correlation function with nonwhite noise. 

4.2. Subharmonic Generation and Quantum Noise 

The previously discussed problems could all be formulated in terms of 
a classical stochastic process irrespective of the origin of noise. The 
Fokker-Planck equation of the traditional laser model was actually the 
equation for Glauber's P-representation describing spontaneous emission 
noise. The other models were purely classical from the beginning, since the 
noise was macroscopic and mostly imposed from the outside. In this 
section we want to discuss a model that exhibits the typical features of 
quantum noise, which cannot be formulated as a classical stochastic 
process. The interaction of light through a Z 2 nonlinearity in a crystal is 
known as the parametric oscillator. In case of degeneracy this process is 
called sub- or second-harmonic generation. This model is ideally suited to 
investigate the peculiar features of quantum noise and to demonstrate the 
usefulness of the mathematical methods presented above. 

We will describe the parametric interaction of two quantized field 
modes bl and b 2 with the frequencies co and 2e), contained in a doubly 
resonant cavity with the corresponding loss rates ~)1 and 72- These modes 
are excited from the outside by two almost resonant driving forces F1 and 
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F2, where F 2 is the harmonic of F~. The corresponding Hamiltonian can be 
written in the form 

2 
H= ~ hoJ,b~b,,+~z(b~Zb2-b~b~) 

n=] 

• ih(b~Fle-i,ot blF.e+iO.)+ ih(btzF2e 2io)t b2F~e+2~o,) (4.41) 

The time evolution of this dissipative dynamical system is described by the 
master equation for the statistical operator p(t): 

dp(t)= i [H, p] +71[b, ,  pbl] + y,[b~p, bl] +v2[b2, pb~] +y2[b2p, bt2] 
dt h 

(4.42) 

A traditional way to handle this equation is to use a c-number represen- 
tation for p(t) like, e.g., Glauber's P-representation: 

f * * d2~l d2~2 (4.43) p( t )=  I~1, ~2 > P(~l, ~2, ~1, ~2, t) < ~1, Cr 

Thereby the master equation is transformed into a partial differential 
equation for the quasiprobability P. The linearized form of this process has 
already been studied at the beginning in connection with the different 
aspects of quantum noise. In linear approximation this process did not lead 
to a classical Fokker-Planck equation and we expect that this is also the 
case for the full nonlinear model. The parametric process is an ideal can- 
didate for the application of the positive P-representation, since the 
corresponding evolution equation contains derivatives only up to second 
order. Therefore it can be transformed into a genuine Fokker-Planck 
equation without further approximations. The probability density 
corresponding to the positive P-representation is defined on an eight- 
dimensional phase space, i.e., 

0~1' ~2, ill ,  f12 and their complex conjugates 

and the statistical operator p(t) is given by 

e(~l, ~2,/L,/~2, t) 
(fl,, f121 d2al d2~2 d2fll d2f12 (4.44) 

When inserting this form into the master equation, we find the following 
Fokker-Planck equation(3~'32): 
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a-7 = E(yl +i31)cq--Zf l l~z-Ft]+Ecq ~ f l l ,  6t ~ -31] 

( 2+i62) 2+ za -F2 + 62--, -G]  

+Z 82 +Z ~2 ) 
(4.45) 

For an analytic point of view, this partial differential equation in eight 
dimensions is a nightmare and there is little hope for an analytical solution. 
Statistically equivalent to Eq. (4.45), however, is a set of eight nonlinearly 
coupled Langevin equations with noise only in the equations for ~l(t) and 
ill(t). Their form is easily deduced from the Fokker-Planck equation by 
standard rules. Starting for the moment with the classical counterpart of 
this process, i.e., fl = ~*, 

d 
dt ~1 = - ('~1 + 61) ~ + Z0~2~ + FI 

d ~ _Z__~+F 2 
dt ~2 = --  (~2 + 62) 2 2 

(4.46) 

we want to emphasize that already the classical problem in four dimensions 
has a rich variety of instabilities and bifurcations when the strength of the 
external fields F1, F2 is gradually increased. We differentiate between the 
cases of sub- or second harmonic by setting F1 = 0 or F2 = 0, respectively. 
For the initial condition we choose the vacuum state. In the subharmonic 
case, i.e., F1 = 0, the field ~2 builds up from zero under the action of the 
coherent force F2. Due to the parametric coupling of the subharmonic 
field, o~ 1 would remain in the vacuum state if it were not for the quantum 
fluctuations that enter the equation for ~a. In this way ~1 builds up entirely 
from noise. It fluctuates randomly about zero when operated below 
threshold F2=YlY2/Z and becomes more and more coherent when the 
pump field intensity is increased. 

The Langevin equations for the quantum process in eight dimensions 
are quite similar to Eq. (4.46). We only have to replace ~* by + 3 j  and 
include the appropriate equations for //j. Some care has to be taken 
when inserting the corresponding noise sources r and {2 from the 
Fokker-Planck equation into the equations for ~,(t) and fl,(t). 

The problem is solved numerically by integrating the Langevin 
equations under the influence of randomly chosen forces ~l(t) and ~2(t). 
The sum over an appropriate number of trajectories approaches the quan- 
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tum mechanical ensemble average. The temporal evolution of the intensities 
< b ~ b l > = ( ~ l / / l >  and (b2tb2>=<e2/32> rising up from the vacuum is 
shown in Fig. 11. The nonclassical feature of this process becomes evident 
when we calculate also the variances of the fields. Starting from the vacuum 
state with equal uncertainties, the variances of the two quadrature com- 
ponents become nonsymmetric in the course of time, indicating the 
creation of partially squeezed states. This is shown in Fig. 12. Since we are 
simulating a quantum mechanical process by purely classical stochastic 
trajectories, one might wonder if such an approach will always obey the 
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Fig. 12. Variances for the second harmonic field for the same parameters as in Fig. 11. (a) 
For the real part, (b) for the imaginary part. (c) The uncertainty product. 
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restrictions of the uncertainty principle. This doubt is ruled out through 
this figure, where we have also plotted the uncertainty product. A more 
critical case in this respect is shown in Fig. 13, where a mixed state is 
discussed, i.e., both fields are driven from the outside simultaneously. Here 
squeezing and antisqueezing are exchanged in the course of time, and the 
trajectories cross "dangerously" close to the limit of the uncertainty 
product. Nevertheless, even in this case the uncertainty relation is satisfied 
for all times. 

This example generalizes the linear model into the nonlinear regime, 
where hardly any analytic approach is known to solve such a problem. It 
also demonstrates the power and the convenience of the positive 
P-representation approach. It is obvious that this method can be applied 
also to other nonlinear quantum optical problems. However, at this point 
it should bot be concealed that there also exist some not yet understood 
problems associated with this method. When the corresponding classical 
process becomes unstable and undergoes a bifurcation to a limit cycle, to 
period doubling, or even to chaotic motion, more and more trajectories 
tend to exhibit large excursions from the average and may even diverge 
numerically. This is an unsolved problem at the moment and further work 
is needed to understand the significance of these excursions. 

4.3. Photon Statistics of Quantum Jumps 

In the early days of quantum mechanics it was possible to calculate 
the stationary properties of atoms such as the energy spectrum and the 
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eigenfunctions. The irreversible transitions between those states--the quan- 
tum jumps--had to be postulated ad hoe, causing a lively controversy for 
years. Since the theory was based solely on Schr6dinger's wave function 
and its unitary time evolution, the concept of jumps seemed odd and 
did not fit into the theoretical framework. When it was discovered that 
spontaneous emission was caused by the vacuum fluctuations of light, 
the physical origin of these jumps became understood and the concept of 
quantum jumps lost its artificial character. Also in all practical cases there 
is little if any trace of those individual jumps, since they are always 
averaged out in the presence of many atoms. In a different context, the idea 
of quantum jumps has come up again recently, because now it is possible 
to trap single atoms and to carry out those idealized experiments that had 
seemed to be mere Gedanken experiments a few years ago. (33'34) 

When an electron is initially prepared in a long-living state, it will 
remain there for a certain period of time, until it eventually jumps back to 
the ground state by emitting a photon. This single event is rather difficult 
to see, since in a typical experiment only one of 10 3 photons is recorded. 
However, the trace of this individual event can be amplified by many 
orders of magnitude by coupling the ground state to a dipole-allowed 
excited state through a resonant laser field. Then no fluorescence from the 
allowed transition is observed as long as the electron is shelved in the 
metastable state. The return of the electron to the ground state manifests 
itself in a sudden onset of fluorescence. This is an easily observed signal, 
even from a single atom. The jump can be repeated in a stationary fashion, 
when a second resonant laser is used to drive the forbidden transition as 
well. Each downward jump from the metastable state is associated with the 
onset of fluorescence and any upward jump will quench the signal again. If 
this intuitive but oversimplified picture is basically correct, then it is 
possible to observe each individual jump. While the jump along the forbid- 
den transition creates only a single spontaneous photon per lifetime, it is 
associated here with the random appearance and extinction of a strong 
fluorescence signal. Only the fluorescence from a single atom will show this 
effect. In the presence of a large number of atoms the jumps will be 
averaged out, since they occur randomly in time. 

At first sight, the theoretical description of this effect seems to be 
rather difficult. It is a unique single-atom effect and we are interested in the 
properties of a single trajectory I(t) only. Ensemble averages in the usual 
sense are not of great help, since they cannot predict jumps that occur 
randomly in time. Fluorescence is also a quantum mechanical effect and 
semiclassical theory is not applicable eitherJ 35-38) The statistical properties 
of such a randomly fluctuating fluorescence signal can be characterized, 
however, by the photon counting probability W(n, T). While ( n ) =  
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Z n W(n, T) measures the average number of photons recorded in a time T, 
W(n = O, T) is a measure for observing no event over T seconds. To be 
more specific, let us assume that the metastable state lives on the average 
for 7 ; l = l s e c  and the allowed transition has a bandwidth of 
72= 108sec -1. In a collection time of T ~  1 sec we have on the average 
(n ) -~  108 . If no jumps occur at all, then W(n=0, T = I  sec) is of the 
order exp(-  108), i.e., practically zero. The appearance of dark periods 
in the fluorescence signal due to the jumps requires that W(n=0, 
T= 1 sec)'-~ 1/3, i.e., of order one, when both transitions are driven in 
saturation. (36) Dehmelt, who had suggested this idea almost 10 years ago, 
was also the first to observe the quantum jumps expenmentany,(39) 
followed by other groups.(4~ 

In order to evaluate W(n, T) in a consistent quantum mechanical 
form, in contrast to the semiclassical examples above, it is necessary to 
calculate the entire hierarchy of intensity correlation functions up to 
arbitrary order: 

Gn = (bt( t l )  bt ( t2 )  - . .  bY(in) b(tn).. ,  b(/2)  b(tl)) (4.47) 

The leading two-photon correlation function G2(t) already indicates the 
existence of dark periods in the fluorescence signal. 71 and 7z, 71 >> 72 are 
the spontaneous emission rates: 

G2(t) 1 (exp 3 
G 1 ( 0 ) = ~ { 1 + 1 / 2 ,  ( -2-~ztz t ) -3exp(-271t ) )}  (4.48) 

This result is derived under the assumption that the phase coherence is not 
of central importance and rate equations can be used in the limit of strong 
saturation. Two signatures of the quantum mechanical origin of this result 
are obvious: the curve rises from zero to 1/2 on the short time scale 7i -1, 
which is the well-known antibunching effect, and then falls off for larger 
times 7~ -1 from 1/2 to 1/3, indicating the presence of dark periods. 

In the rate equation limit, it is also possible to calculate the intensity 
correlations of arbitrary order analytically and the counting distribution 
W(0, T) is obtained, in closed form. For simplicity we assume that the 
allowed transition is saturated, while the rate R2 of excitation into the 
metastable state can be varied. The probability of observing no photon 
over the entire time interval T is given by the following expression~36'37): 

W(0, T) 272+3R2 ~ 2e ~1~r/2 + O  ~ 

The terms of order 1/R~ will have to be retained when it comes to calculate 
the entire dark-time statistics by differentiation. This curve is shown in 
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Fig. 14. Quantum jumps must exist when even for a collection time of 
T =  1 sec the probability W(n = 0, T =  1 sec) is still of order unity, where 
on the average one expects to see 108 photons, In the interval 

?Fl ~ T <  ?21 

the counting probability yields 

(4.50) 

which approaches a value of 1/3 in case of strong saturation, i.e., R2 ~> ?2 of 
the metastable level. This result leaves no doubts about the existence of 
quantum jumps in and out of the dark periods. It also describes their 
properties quantitatively. The probability of observing n events in a time T 
is obtained from the previous result by repeated differentiation with respect 
to r/. For  n # 0 we have 

272 + 3R2 n! exp (4.52) 

This results in a Poisson distribution centered around the average photon 
count number, with the exception that the zero count probability is not 
included in this formula, W(n, T) is a double-humped distribution with 
peaks at the two typical modes of operation, i.e., strong fluorescence and 

R2 1 
W(0, T) = -~ - (4.51) 

272+ 3R2 3 
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darkness. A further characterization of this process, which can be com- 
pared with experiments more easily, is the dark-time probability P2(T)dT, 
defined above. By differentiation we find 

72 q- R2 
P2(T)  = 

272 + 3R2 

- I R 2 ( 7 2 + R 2 ) + ~ ] e - 2 R ' r }  (4.53) 

It distinguishes between the short dark times separating individual photons 
during fluorescence, which are statistically very numerous, and the rare but 
long dark periods when the electron is shelved. The initial rise of P2 from 
zero is another indication of the antibunching effect typical for resonance 
fluorescence. Antibunching in the photon counting statistics and especially 
in P(T) has not been discussed so far. 

We can characterize the photon statistics also by its moments, the 
average photon number and its variance. In principle this requires the 
knowledge of W(n, T) for arbitrary photon numbers. In general, it is quite 
difficult to derive a satisfactory expression already for W(0, T) in analytic 
form. Such an explicit result, however, is needed to carry out the high- 
order derivatives (---106) that yield W(n, T). Fortunately, the leading 
moments can be obtained directly from W(0, T) and its low-order 
derivatives with respect to r/: 

The average photon number is given by (43) 

(n)  = nW(n, T)= -tl W(O, T) (4.54) 
n = 0  r /=0 

and the variance or the Mandel Q parameter is (43) 

= Q = + ~.--2~-., W(0, T ) -  W(0, T) (4.55) 
r?=O 

Initial sub-Poissonian statistics is the natural result for most driven systems 
and we find quite generally 

Q= -qTpll( t= oo ) + ... (4.56) 

while for long times, Q assumes here very large values. This is in strong 

822/54/5-6-12 
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contrast to the two-level result, where Q ~ 0 for t ~ oe. The sharp increase 
of Q for long times, i.e., T ~ 7 ~  -1, 

2 ~1 for T ~  oe (4.57) 

is associated with enormous intensity fluctuations. This is also an 
unmistakeable trace of the intermittent fluorescence signal. 

The question of coherence, which seems to be of basic interest here, 
has not been touched yet. In our intuitive understanding, as well as in our 
theoretical approach, we have disregarded the possibility of coherent super- 
position states and have focused only on the level populations. It is not 
intuitively obvious, however, how an atom will evolve with respect to spon- 
tanuous emission when it is initially prepared in a superposition of the two 
excited states. Will it be shelved or will it emit? To answer this question, it 
is necessary to derive the counting statistics based on the coherent quan- 
tum mechanical Bloch equations. In addition, one expects that rate 
equations characterize a single atom only poorly, since energy and phase 
relaxation occur on the same time scale. In the more general Bloch picture 
one can also hope to see some indication of the coherent Rabi oscillations 
in the counting statistics. It turns out that those oscillations are a quite 
subtle effect, which becomes visible only in the dark-time statistics 
P(T) dT.(43) Without presenting any details here, we only want to point out 
that quantum jumps or the intermittent fluorescence exist with or without 
coherence taken into account. While the quantitative details depend 
strongly on the relation of transverse to longitudinal relaxation rates, the 
mere existence of the jumps does not. 

5. C O N C L U S I O N S  

In quantum optical problems, noise can arise from various sources. It 
can result from a mere lack of control over the internal parameters of the 
system, can be imposed from the outside, or it can be an intrinsic property 
of the system, such as thermal or quantum noise. 

Either form of noise can be seen in optical experiments, which makes 
it necessary to describe the light field and its temporal evolution in a 
statistical way. The typical differences of classical and quantum noise have 
been elucidated by some tutorial, linear examples, before we turned to the 
general question of the paper and presented a number of realistic and 
relevant nonlinear physical models where noise plays an essential role. 

A common feature of most of these models was that to a large extent 
they could be solved in analytical form, which allowed us to compare the 
different models and their properties in a very compact and transparent 
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way. The comparison of theoretical results with experimental observations 
should demonstrate that additive and multiplicative, classical and quantum 
noise are relevant for a proper understanding of quantum optical processes. 

It was one of the aims of this paper to show that noise is not 
necessarily only an unavoidable nuisance limiting experimental accuracy; 
we hoped to demonstrate that fluctuations can also lead to rather 
interesting features, especially when quantum noise with its peculiar 
properties dominates over fluctuations of classical origin. 
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